Nucleotide modulation of pinacidil stimulation of the cloned K(ATP) channel Kir6.2/SUR2A.

نویسندگان

  • F M Gribble
  • F Reimann
  • R Ashfield
  • F M Ashcroft
چکیده

ATP-sensitive K(+) channels are the target for K(+) channel openers such as pinacidil. These channels are formed from pore-forming Kir6. 2 and regulatory sulfonylurea receptor (SUR) subunits. Pinacidil activates channels containing SUR2A (heart, skeletal muscle), but not those containing SUR1 (beta cells). Surprisingly, binding of the pinacidil analog [(3)H]P1075 is dependent on added nucleotides, yet in electrophysiological studies, pinacidil is effective in the absence of intracellular nucleotides. To determine the reason for this anomaly, we examined the functional interactions between pinacidil (or P1075) and nucleotides by expressing cloned Kir6. 2/SUR2A channels in Xenopus laevis oocytes. Both pinacidil and P1075 activated macroscopic Kir6.2/SUR2A currents in the absence of added nucleotide, but the presence of intracellular ATP or ADP slowed the off-rate of the response. Mutation of the Walker A lysine in a single nucleotide binding domain (NBD) of SUR2A (K707A in NBD1, K1348A in NBD2), abolished this action of nucleotide. The K1348A mutation prevented stimulation by MgADP but had little effect on the amplitude of the pinacidil response. In contrast, Kir6.2/SUR2A-K707A currents were activated by MgADP, but only responded to pinacidil in the presence of Mg-nucleotide. Off-rates in the absence (or presence) of nucleotide were slower for the pinacidil analog P1075 than for pinacidil, consistent with the higher affinity of P1075. We suggest that slowing of P1075 dissociation by nucleotide enables binding to be detected.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differential response of K(ATP) channels containing SUR2A or SUR2B subunits to nucleotides and pinacidil.

ATP-sensitive K-channels (K(ATP) channels) are the target for K(ATP)-channel openers (KCOs), such as pinacidil and P1075. These channels are formed from pore-forming Kir6.2 and regulatory sulfonylurea receptors (SUR2A in heart and skeletal muscle; SUR2B in smooth muscle). The two isoforms of SUR2 differ only in their final 42 amino acids, a region that includes neither the Walker A and B nucleo...

متن کامل

SUR2 subtype (A and B)-dependent differential activation of the cloned ATP-sensitive K+ channels by pinacidil and nicorandil.

1. The classical ATP sensitive K+ (K(ATP)) channels are composed of a sulphonylurea receptor (SUR) and an inward rectifying K+ channel subunit (BIR/Kir6.2). They are the targets of vasorelaxant agents called K+ channel openers, such as pinacidil and nicorandil. 2. In order to examine the tissue selectivity of pinacidil and nicorandil, in vitro, we compared the effects of these agents on cardiac...

متن کامل

The novel diazoxide analog 3-isopropylamino-7-methoxy-4H-1,2,4-benzothiadiazine 1,1-dioxide is a selective Kir6.2/SUR1 channel opener.

ATP-sensitive K(+) (K(ATP)) channels are activated by a diverse group of compounds known as potassium channel openers (PCOs). Here, we report functional studies of the Kir6.2/SUR1 Selective PCO 3-isopropylamino-7-methoxy-4H-1,2,4-benzothiadiazine 1,1-dioxide (NNC 55-9216). We recorded cloned K(ATP) channel currents from inside-out patches excised from Xenopus laevis oocytes heterologously expre...

متن کامل

Gender-specific difference in cardiac ATP-sensitive K(+) channels.

OBJECTIVES The main objective of this study was to establish whether gender regulates expression and/or properties of cardiac ATP-sensitive K(+) (K(ATP)) channels. BACKGROUND Recently, evidence has been provided that differing cardiac responses in males and females to metabolic stress may result from gender-specific difference(s) in the efficiency of endogenous cardioprotective mechanism(s) s...

متن کامل

ATP modulation of ATP-sensitive potassium channel ATP sensitivity varies with the type of SUR subunit.

ATP-sensitive potassium (K(ATP)) channels comprise Kir and SUR subunits. Using recombinant K(ATP) channels expressed in Xenopus oocytes, we observed that MgATP (100 microm) block of Kir6.2/SUR2A currents gradually declined with time, whereas inhibition of Kir6.2/SUR1 or Kir6.2DeltaC36 currents did not change. The decline in Kir6.2/SUR2A ATP sensitivity was not observed in Mg(2+) free solution a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular pharmacology

دوره 57 6  شماره 

صفحات  -

تاریخ انتشار 2000